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Abstract

One of the major issues 1o this paper is to train
artiticial neural networks {(ANN) time series
preblem using a grid search training method, which
is efficient, when stiff ridges are present. The
method does not require derivative information. In
contrast, back propagation frains an ANN using
gradient uformation of an ANN error function.
Using the derivative free grid search training
method, ANN time series model is trained in 1558
number of epochs. Secondly, ANN time series
models equivalent to multi-variate regression and
logistic regression are investigated both in training
and validation periods. The logistic type ANN time
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series forms stift ridges in error surface and takes
more efforts to converge. The capability of the
togistic type ANN model is not satisfactory in
validation. period. as. il showed. in. training period.
The ANN time series model with multi-variate type
regression shows better approximation capabilities

~beyond-the training-period. This claim 1s-strongly -

supported by the statistical results in validation
period, where mean absolute percenfage error
{(MAPE)} 15 3.25 for the multi-variate type ADNN
regression model against 4.10 for the logistic type
ANN time series regression model.
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MNotations and definitions

P = Total number of training pattern in training set
with p=1L2,....
v, = Actual Output of ANN at output neuron
in 3 layer

W, =Estimated output of ANN at output newron

& in 3" layer
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Aw = Step length in grid search in ANN weights.
Wy and w,, =ANN Bias terms in 1% and 2"

layer
S =Total number of neuron in 1% layer

R =Total number of neurcn in 2™ fayer

R = Total number of neuron in 3 layer

7] o .o . .
x” =The training pattern defined as design

variables x7 = i‘u, zp, ........ ,(p_;i;}

The indexes p, 3, W.®  are defined as
p=12..,P, 3=12...9, ®=12...%,
B=120., 8.

1.  Imtroduction

ANN  approximates a real valued function

[Kotmogorov (1963}, Hecht-Nielsen (1990)] and its
approximation capabilities have been extended to
seasonal time series problem, especially in peak
load forecasting problem [Ranaweera (1996),
McMenamin and Monforte (1998) Park et al
{1991} which are non-linear ir nature.

The Back propagation (BP) method developed by
Rumelhart et al. (1986} is a first order training



method that trains o least square ANN error
tunction. First order minimization techniques are
inefficient and in the presence of stiff ridges near
local minimom BP search performs badly [Jang et
al. (199731, The method is not capable of getting
out of focal minimum due to the presence of
unfavourable eigen values in ANN [Ahmed and
Cross {1999)] and the training becomes difficult
due to formation of stiff ridges.

Grid search is a derivative free search method and it
is efficient when the Hessian matrix in ANN error
function confains unfavourable eigen value. This
results  large  condition  number  indicating
computation difficulties in ANN. This can be
attributed to stiff ridge formation. The grid search is
a multi-dimensional search strategy and the search
takes place along coordinate directions. Training an
ANN error function with this method using iine
search accelerates  convergence. This  training
method is attractive when gradient information is
not readily available {Bazaraa et al. (1993)].

In order to address this issue implicitly, Australian
quarterly peak electric load data have been
modelled using ANN. In particular the following
two ANN architectures are proposed.
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2. Training ANN

The input to the ANN is the design variables

f = (@;’J N 2‘” peraiven
the input layer is fed to the hidden layer containing
It number of neuron. The input to the hidden layer

") . The input pattern p from

Hi

is given by  wyy +Zw~ﬁ¢n This input passes
3=l

through an activation function in hidden layer to

produce an output t¢ be fed to the outer layer. The

output of the network due to pattern p is w/. A

feed forward ANN s considered. The input
successive[y passes from the input layer o the
output layer. The ANNs are trained using batch
training principle [Jang et al. (1997), Haykin
{1994)]. A 5-3-1 ANN architecture is proposed in
this study. A tolerance of the order of 1077 is
specified to achieve high degree of accuracy in
training. The proposed ANNs are trained based on

the following least square error minimization
criteria.
: ; r ¥ v e ¥
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The ANN is tramned uging grid search and line
migimisation  in  coordinate  direction, which
accelerates training. The software is developed in

“Model 1 is defined in equation (1) It is-equivalent

, % 1 -
Wy = Wog + 3‘}- Wt m,,.__.,..{_._..__:._.___T T
=
- Wont X W«J:@P !
3= Ji

P+ e
A

to multi-variate regression if there is one hidden
neurcn ia second layer. Logistic type regression is
shown in eguation {2) when one hidden neuron is
present in second layer. ANN time series model 2 is
given by equation 2. The censequences of these twe
ANNs are observed in training and validation
periods, using three hidden neurones in second
layer.

ABS time series quarterly peak electric load data
without seasonal adjustment from September 1976
to September 1997 is used to train the ANNs and
the data from December 1997 through September
1998 is used for validation.

Table | presents the results of the two trained
ANNSs in training and validation periods. Figure 1
and 2 show the approximation capabilities of the
trained ANN in training periods while figure 3
shows the approximation or generalisalion
capabilities.

Ahmed- {1998} The grid-search method - does not

require derivative information of the ANN error
function. Due to line minimisation, the grid search
training method is self-adaptive and is described
next.

The parameters in ANN models are. connection ..
weights. They are determined by feast square error
measure. Due to parallelism property, the ANN
models are solved by non-linear optimisation
methods [Jang et al. (1997)]. The grid search does
this job. If the variation of ANN error surface is
independent of w , the grid search method converge
towards minimum with reasonable success. The
simple procedure of grid search is described next.

1. One weight parameter w, in a specified
direction is incremented at a time by an amount
Aw , where the magnitude of the quantity Aw
is determined and the sign is chosen such that
the ANN error function is decreased by line
minimisation,
The parameter w is repeatedly incremented by
some amount untit the error surface begins o
increase in chosen direction.
3. Within this method, some variation is possible
to find the minimum of the error surface by
parabolic interpolation of the parameters w .

&
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The function is evaluated at three points and
the last three values of the tunction determine

the minimum of paraboia. Consider w', w”
and w" as the three points that define a
parabola in E' . These points are defined as:
w” = w’ + Aw . such that F{w) > fiw")

w™ =w' +2Aw  suchthat F(w™y > f(w")

4. The minimum of the parabola 1s determined by

o A 4f(W”}w3f(W’}~f(W"’)}
W= - AH" u ’ P
A0 -2 f W)= 2f (W)

Repeat the process unti precision is reached

Lh

and obtain finally w™ =w .

6. The error function is minimised for each

cannection weight we E™ in wrn. One

complete evaluation of all the w e E™ weights

represents an epoch equivalent to BF. Repeat
the process until the minimum of the error
function has converged,

3. Evalvation Criteria
Figure 1 shows the approximate time series after

ANN ftraining using model |, while figure 2 shows
the approximation of ANN time series using model

performance of the ANN model 1 in validation
peried is favourable. The aumber of epoch needed
to train ANN model 2 is 22,361 while in model 1 1t
is 1558, The error surface due to model 2 is more
complex with extremely narrow ridges and
wdentifying iocal minimum has been ditficuit. The
model | also contains ridges but they are not ag stiff
as generated by model 2. The number of epoch is
much less to train the ANN even with high fevel of
specified accuracy of the order 107 MSE is
17.81x10°% and 8.90x10° for model 2 and model | in
validation period respectively.

Table 1: ANN Training Resuits

Measures ﬁ Model 2 E Model 1
Performance in Training Period

No of Epach ) 22.361 1,558

NN Architeciure 5-3-1 5-3-1

Training Set Rd 14

SSE 3.96x107 8.95x10°

SE 4,27 99.45

MSE 4710 10.6x10°

ME -0.05] s

MAE 537.59 766.53

R 0.991 0.980

Adjusted R 0,982 0.975

MPE -0.046 -G.141

MAPE 1.75 2.24

DW test 1.17 0.27

F-Test 443 80 195,17

Performance in Yalidation Period

F-fir-order-to-comment-on-the-best-approximation
of the ANN fitting function, mean absolute
percentage error (MAPE), mean percentage error
(MPE), sum of square error (SSE), sum of error
(SE), mean absolute error (MAE} and mean error
{ME) criteria are used. They are defined as follows:

- ; o
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§ 5

o p=l
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SE = Z(wD -y, MPE =— 3. (W© ¥,
p=l £ op=1
PR _ oL oo p
sE=— 5 et —wly MAE == T {w? ¥ i
Fop=l 7op=l

Additionally, F test and Durbin Waston (D-W) test
IMontgomery and Peak (198231 is used to test the
validily and residual auto correlation in the model.

4, Analysis of Resulis

Table 1 lists the results of the trained ANN models
both in training and validation period. The conlents
of the table are self-explanatory. The experiments
show that model 2 provides better fit during
training period with lowest value in all statistical
measures. The ANN model 1 is not in agreement
with model 2 in the training period. All the statistics
favour the ANN model 2. In contrast, the
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SSE 17 81xi0° R 90x10°

SE 743003 2323 88

MSE 4455100 2.22x10°

ME 1857.51 -580.97

MAE 1857.51 1460.88

MPE 410 133

MAPE ) 410 325

DW test 1.04 0.43

F-Test - -
o A § St s I

Figure | depicts the trained fitting function
represented by model 1. This maodel closely
approximates the acmal data. The mean square
error is of the order of 10.60x10° and the mean
ertor is 1.18 in training period. The MAPE 2.240
and MPE —0.141 with R value 0.980 indicate that
the model | modestly captures the behaviour of the
seasonal time series. The overall F value is
significant at (.03 level of confidence interval.
Positive correlation is expected due to D-W value
close to zero. Figure 2 shows that the ANN fitting
function due to model 2. It fits the time series with
#HISE at 4.70x10° whife ME is -0.031. The MPE
and MAPE measures are ~0.040, 1.75 respectively.
The R’ value 0.991 suggests better approximation
of model 2 in comparison to model {. The D-W and
F-test are favourable in training period.



In validation period the mode! | shows MAPE 3.25
while the MPE is ~1.33 and this leads to MSE
2.22x10% The performance of the ANN model 2 in
training period is less significant than the ANN
model |. The experiment identifies MAPE and
MPE both as 4.1 while MSE reached to 4.45x10°%,
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5. Significance of the study

I show greater approximation capabilities in
validation period than ANN model 2. Training an
ANN in the presence of ridge in error surface
becomes difficuit due to large condition number
resulting in Hessian matrix [Ahmed and Cross
{2000)]. This study also shows modelling ANN
time series and the training effect on ridge
formation. The ANN moedel 2 is like logistic
regression and transform output in hidden layer
between 0 and 1. The corresponding ANN error
function is expected to form complex ridges in error
surface and would take more efforts to train. The
ANN model 1, on the other hand does not form
such complex ridges. These two ANN are trained
using self-adaptive parameter free software using
grid search methed. The number of epoch
determines the difficulties in training the two ANN.
The grid search training method successfully trains
ANN in less number of epochs in the presence of
stiff ridges in ANN error function. It is derivative
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free training method and applicable to train ANN
error functions that are ill conditioned. Parameter
selections are automatic by virtue of line search and
do not follow ad hoc method as found in [Jacobs
(1988), Weir (1991)]. This is one of the important
features of this method.
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6. Conclusions

Two ANN time series models are presented and
these models are trained using a grid search training
method. This approach is effictent when stiff ridges
are present. The number of epochs needed to train
the ANN are 22,361 and 1558 respectively for the
model 2 and model 1. The ANN mode! 2 generates
more stiff ridges than the ANN model 1. It is
evident from the number of epoch o train the
ANNs. Motivation behind the grid search in ANN
training 1S to improve training performance in the

-pmse‘nce Or St}ff Tidge, S%’ﬂcc It IS eﬁlc1eﬂ[ In SLECh e

situation. This method does not require the ANN
function to be differentiable and would tend to
perform better when the derivative information is
not easily available.

The performance of the ANN model | and model 2
in seasenal tfime series problem both in training and
validation pericds are shown. The ANN modet 2
approximates seasonal time series better than ANN
model t in training period. This is supported by
MPE, MAPE measures. The corresponding values
are —(1.046, 1.75 and ~0.141 and 2.24 respectively.
A different picture emerges in the validation period,
where model 1 performs better than model 2. The
MPE and MAPE values are 4.10, 4.10 and -1.33,
3.25 respectively for ANN model 2 and model |
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